This handbook covers the peridynamic modeling of failure and damage. Peridynamics is a reformulation of continuum mechanics based on integration of interactions rather than spatial differentiation of displacements. The book extends the classical theory of continuum mechanics to allow unguided modeling of crack propagation/fracture in brittle, quasi-brittle, and ductile materials; autonomous transition from continuous damage/fragmentation to fracture; modeling of long-range forces within a continuous body; and multiscale coupling in a consistent mathematical framework.
This handbook covers the peridynamic modeling of failure and damage. Peridynamics is a reformulation of continuum mechanics based on the integration of interactions rather than the spatial differentiation of displacements. The book extends the classical theory of continuum mechanics to allow unguided modeling of crack propagation/fracture in brittle, quasi-brittle, and ductile materials; autonomous transition from continuous damage/fragmentation to fracture; modeling of long-range forces within a continuous body; and multiscale coupling in a consistent mathematical framework.
Editors Bobaru, Foster, Geubelle, and Silling present readers with a collection of academic and research perspectives toward a comprehensive guide to contemporary peridynamic modeling in a variety of applications. The editors have organized the sixteen selections that make up the main body of the text in five parts devoted to the need for nonlocal modeling and introduction toperidynamics; mathematics, numeric's, and software tools of peridynamics; material models and links to atomsistic models; and other related subjects. Florin Bobaru is a faculty member of the University of Nebraska-Lincoln. John T. Foster is a faculty member of the University of Texas at Austin. Philippe H. Geubelle is a faculty member of the University of Illinois. Stewart A. Silling is with Sandia National Laboratories in New Mexico
~ProtoView, 2017