Viele Prozesse und Erscheinungen in Physik, Technik und anderen Wissen schaftsgebieten lassen sich mathematisch durch Differentialgleichungen beschrei ben. Wi.ngen dabei die gesuchten Funktionen nur von einer unabhangigen Va riablen ab, spricht man von gewohnlichen Differentialgleichungen. Das Gebiet der gewohnlichen Differentialgleichungen ist sehr umfangreich. Die ser Band gibt eine Einfiihrung in die wichtigsten Losungsmethoden sowie in einige theoretische Grundlagen, wobei stets besonderer Wert auf die Anwen dungen gelegt wird. Durch die Darstellungsweise solI das folgerichtige mathe matische Denken geschult werden. Auf Beweise und Beweisskizzen wird nur dann eingegangen, wenn es fiir das Verstandnis erforderlich erscheint. Zunachst werden lineare Differentialgleichungen und lineare Differentialglei chungssysteme insbesondere mit jeweils konstanten Koeflizienten behande1t. Es folgen nichtlineare Differentialgleichungen und ein numerisches Verfahren. Schliefilich werden Potenzreihenansiitze mit Verallgemeinerungen erortert und Einblicke in die Theorie der Rand- und Eigenwertaufgaben sowie der dynami schen Systeme vermittelt. In der allgemeinen Theorie werden die gesuchten Funktionen durch y(x) oder Yl(X), Y2(X), ... bezeichnet. In den Beispielen und Aufgaben treten jedoch haufig auch andere Bezeichnungen auf - z. B. x(t),